CS5011 - Machine Learning
Course Data :
Syllabus:
Basic Maths : Probability, Linear Algebra, Convex Optimization
Background: Statistical Decision Theory, Bayesian Learning (ML, MAP, Bayes estimates, Conjugate priors)
Regression : Linear Regression, Ridge Regression, Lasso
Dimensionality Reduction : Principal Component Analysis, Partial Least Squares
Classification : Linear Classification, Logistic Regression, Linear Discriminant Analysis, Quadratic Discriminant Analysis, Perceptron, Support Vector Machines + Kernels, Artificial Neural Networks + BackPropagation, Decision Trees, Bayes Optimal Classifier, Naive Bayes.
Evaluation measures : Hypothesis testing, Ensemble Methods, Bagging Adaboost
Gradient Boosting, Clustering, K-means, K-medoids, Density-based
Hierarchical, Spectral
Miscellaneous topics: Expectation Maximization, GMMs, Learning theory
Intro to Reinforcement Learning
Graphical Models: Bayesian Networks.
Pre-Requisites |
Parameters
Credits |
Type |
Date of Introduction |
4-0-0-0-8-12 |
Elective |
Aug 2008 |
|
Previous Instances of the Course
- Jul 2016 - Nov 2016
Instructor(s) : Balaraman Ravindran.
Teaching Assistants : J P Sagar, Satya Kaushik Garikipati, Sahil Sharma, Arinjita Paul, Preksha Nema, Shirjon Shalku Hansdah, Beethika Tripathi.
- Aug 2015 - Nov 2015
Instructor(s) : Balaraman Ravindran.
Teaching Assistants : Priyatosh Mishra, Pallavi Gudipati, Abhinav Garlapati, Gangal Varun Prashant, , Prajapati Nikul Atmaram, Jonnalagadda Nikhila, Ramnandan S K.
- Jul 2014 - Nov 2014
Instructor(s) : Balaraman Ravindran.
Teaching Assistants : Saket Gurukar, Babbula Spandana Raj, Dhanvin Mehta Hemant, Sarath Chandar A P, Priyatosh Mishra, Harini A., Nalini Deswal.
- Jul 2013 - Nov 2013
Instructor(s) : Balaraman Ravindran.
Teaching Assistants : Amit Padhy, NiharJyoti Sarangi, Sarath Chandar A P.
- Jul 2012 - Nov 2012
Instructor(s) : Sutanu Chakraborti.
- Jul 2011 - Nov 2011
Instructor(s) : Ashish V Tendulkar, Sutanu Chakraborti.
- Jul 2010 - Nov 2010
Instructor(s) : Ashish V Tendulkar, Sutanu Chakraborti.