
Adaptive Network Intrusion Detection System using
a Hybrid Approach

R Rangadurai Karthick
Department of Computer Science

and Engineering
IIT Madras, India

ranga@cse.iitm.ac.in

Vipul P. Hattiwale
Department of Computer Science

and Engineering
IIT Madras, India

vipul.hattiwale@gmail.com

Balaraman Ravindran
Department of Computer Science

and Engineering
IIT Madras, India

ravi@cse.iitm.ac.in

Abstract—Any activity aimed at disrupting a service or making
a resource unavailable or gaining unauthorized access can be
termed as an intrusion. Examples include buffer overflow attacks,
flooding attacks, system break-ins, etc. Intrusion detection sys-
tems (IDSs) play a key role in detecting such malicious activities
and enable administrators in securing network systems. Two
key criteria should be met by an IDS for it to be effective: (i)
ability to detect unknown attack types, (ii) having very less miss
classification rate.

In this paper we describe an adaptive network intrusion
detection system, that uses a two stage architecture. In the first
stage a probabilistic classifier is used to detect potential anomalies
in the traffic. In the second stage a HMM based traffic model is
used to narrow down the potential attack IP addresses. Various
design choices that were made to make this system practical
and difficulties faced in integrating with existing models are also
described. We show that this system achieves good performance
empirically.

I. I NTRODUCTION

Any attempt made to gain unauthorized access to a com-
puter or disrupt the availability of a service/resource is termed
as an intrusion. Intrusion Detection Systems (IDS) refers to
a software or a system built to detect intrusions. In general,
detection mechanism used by IDS can be classified into two
major categories.

1) Signature based detection: Models built from well
known attack types, i.e., from already known attack
patterns.

2) Anomaly based detection: Modeled using normal traffic
and deviation from this profile is considered anomalous.

Anomaly based techniques are preferred over signature
based techniques owing to their ability to detect novel intru-
sions. Signature based techniques

The key aspects that we considered for building an anomaly
based IDS are

• Choice of attributes: The model is proposed to be imple-
mented in a web server or at network gateway, where the
inflow of traffic is huge. We considered to use information
available from a packet’s header as features to build the
model. This way we don’t incur much overhead on the
server and does not become a bottleneck.

• Handling infrequent patterns: All normal network traffic
do not follow uniform flow pattern. Any model proposed
should be able to handle those normal traffic that are
infrequent. Our model uses boosting techniques to learn
over these infrequent patterns in order to classify them
correctly.

• False alarm rate: The main drawback of an anomaly
based detection is the high false alarm rate. Boosting
technique used for the proposed model takes care of this
problem and had very low false alarm rate.

We use Hidden Markov Model (HMM), a generative model,
for modeling input data. The model is proposed to profile TCP
based communication channel for intrusions. Any normal TCP
connection would have three phases during their connection
time, i.e., connection establishment, data transmission and
connection termination phase. There is an inherent sequential
nature in such mode of communication and makes it conve-
nient for us to model them using HMM, which can exploit
this nature of TCP traffic to build models.

A brief description of the HMM model is as follows. The
first step in our approach is source separating traffic. It is
performed on both training and testing traffic in order to
preserve the sequence information of TCP traffic. HMM is
used to profile source separated clean traffic and the model
thus built is used to classify test traffic. This approach had
high attack detection rate and also high false positive rate.
High false positive rate corresponds to flagging legitimate
traffic as attack and cannot be accepted when designing such
systems. Hence various design choices, port based separation,
cascading of HMMs, were considered for traffic profiling.
These approaches increased the accuracy of the classifier
with very low false positive rate. Intrusion detection dataset
released by DARPA [3] is used to train and test HMM models.

The HMM based model had few shortcomings when we
tried to implementing it in real time. This lead us to look for
alternative methods that could be compounded with HMMs
to make it work in real time. Vijayasarathy et al. [2] had
proposed a Naive Bayesian (NB) based model for profiling
traffic. This approach handles the skewness in network traffic,
i.e., the amount of anomalous traffic to a server is very low
compared to that of clean traffic. NB based model runs faster,978-1-4673-0298-2/12/$31.00c© 2012 IEEE

close to line speed, and computes probability of occurrenceof
groups of incoming packets, windows.

The NB model is used for online classification and HMM
model is used for offline analysis of traffic. Traffic that were
flagged as anomalous by the NB model were fed into an offline
HMM that computed the probability of connections present in
the window. Thus combining NB and HMM models we form
a hybrid model, where in NB model computes probability of
occurrence of windows and HMM computes the probability of
each connection within the window. This way the output from
the HMM, list of attacking IPs, can be used as an update
to firewall on what IPs to block. HMM now can be used
to generate IP blacklist and makes the hybrid model more
efficient.

The rest of the paper is organized as follows. A brief
description of HMM is presented in Section 2. Section 3
describes our proposed HMM model and preliminary results
obtained are presented in Section 4. Section 5 explains the
problems that we anticipated that could be faced while imple-
menting this system in real time. Section 6 describes hybrid
model and Section 7 describes various experiments and results
obtained. Section 8 describes related work that has been done
by research community in this area.

II. H IDDEN MARKOV MODEL

HMM is a generative model that can model data which
is sequential in nature. It is used to model data where the
assumption of i.i.d. is too restrictive, like speech processing
applications. A detailed tutorial on HMM is available in [1].

Markov Property: Consider a system withN states and at
discrete time intervals, there is transition among states.Let
these instances bet, t = 1, 2, 3, · · · . Any process is Markovian
if the conditional probability of future states, given the present
state and past states, depend only upon the present state. In
order to predict future state, the process by which the current
state is obtained does not matter, i.e.,

Pr[qt = Si|qt−1 = Sj , qt−2 = Sk, · · ·]

= Pr[qt = Si|qt−1 = Sj]

(1)

We have used HMM that follows the above first order
Markov property.

In a HMM, the states and their transitions are not visible.
Instead an output symbol, from a discrete set of symbols, is
emitted during every transition. This sequence of symbols are
the observables used to train a HMM. The following figure
explains this.

Definition of a HMM:
HMM [λ] is a five tuple, i.e.,λ = [N,M,A,B, π].
The parameters of the model are

N, number of states in the model, S ={S1, S2, · · · , SN}.

M, number of observation symbols, V ={V1, V2, · · · , VM}.

Fig. 1. HMM Architecture

A, state transition probability matrix, A={aij}, where

aij = Pr[qt+1 = Sj |qt = Si] 1 ≤ i, j ≤ N

(2)

It is a N*N matrix.

B, observation symbol probability matrix, B={bj(k)},
where

bj(k) = Pr[vk at t|qt = Sj] 1 ≤ j ≤ N

1 ≤ k ≤ M

(3)

It is a N*M matrix.

π, initial state probability matrix,π = {πi}, where

πi = Pr[q1 = Si] 1 ≤ i ≤ N

(4)

It is a 1*N matrix.

Algorithms for HMM: The following two algorithms are
used to model and use the HMM.

1) Baum-Welch algorithm is used to learn the parameters
of the model,{A, B, π}, from input data.

2) Forward-Backward algorithm is used to learn the prob-
ability of occurrence of an observation sequence given
the model, P[O|λ].

III. D ESIGN CHOICES

Web servers in general use Transmission Control Protocol
(TCP) for communication between clients and server. TCP
is a state based protocol, i.e., any TCP connection would
progress through set of state transitions during its life time.
This inherent stateful and temporal nature of TCP traffic could
be captured well by using a HMM based classifier. This lead us
to use HMM as our basic building block in our system design.
In the remainder of this section, we describe parameters that
were used to build our model and other design considerations
that shaped our model design.

A. Choosing Parameters

The key aspect in building a HMM is to decide the states
and symbols that are to be used to build the model. Choosing
right set of attributes for a model is very important as this
step would ensure effective usage of available data. For
our experiments, we use TCP header information present in
packets as features.

States of the model are called hidden or latent variables and
are used to describe the underlying distribution generating the
data. In our approach, states of the HMM do not correspond
to actual TCP states. They are used to model the HMM to best
explain the traffic. They do not have direct physical signifi-
cance. For example, network traffic can be assumed to consist
of traffic from legitimate and malicious users. Transition from
one state to another can be considered equivalent to switch
from traffic between malicious and legitimate users.

Next we had to decide upon what could be used to represent
symbols in our HMM model. We use TCP flags as symbols for
the HMM model, following Vijayasarathy et al. [2]. The other
parameters of the HMM model -π, A, and B are estimated
using Baum-Welch algorithm.

B. Initial Approach

Building anomaly based classifier involves two phases -
training and testing. During the training phase, the classifier
is made to profile over clean traffic, i.e., traffic stream which
is devoid of any malicious traffic stream. During the testing
phase, traffic which were not used during training are used to
measure the performance of the model built. The classifier
flags any traffic that deviates from clean traffic profile as
suspicious. The intuition behind this approach is that clean
traffic and malicious traffic are not generated from the same
distribution.

Training phase of our algorithm begins with source separat-
ing training traffic into separate streams. All packets between
a unique source/destination IP pair constitute a stream. Each
stream consist of series of TCP flags that were used in the
packets throughout the connection. Then a single HMM model
is used to learn the characteristics of all streams to the server.

The HMM model takes these TCP flags as observables
and other parameters of the model can be computed from
them. Upon analyzing the traffic data, we found that only few
flags were used in general for most TCP communication. We
associated a number with each flag and a connection with
sequence of flags is converted into a sequence of numbers.
HMM model is trained over this sequence of numbers. The
frequently used TCP flags and the unique ID which we used
for our modeling are as follows.

• SYN - 0
• SYN/ACK - 1
• ACK - 2
• PUSH/ACK -3
• FIN/ACK - 4
• RST - 5
• other TCP flags - 6

The same procedure is followed in the testing phase. The TCP
flag sequence is converted into a sequence of numbers and the
probability of occurrence of this sequence is tested over the
model. Since states of the model does not correspond to actual
TCP states, the number of states can be chosen empirically.

The testing phase of the above said approach is depicted in
Figure 2.

unique

IP pair

unique

IP pair

unique

IP pair

unique

IP pair

HMM

modelIncoming

traffic to

server

Source Separation

Attack

traffic

Legitimate

traffic

Fig. 2. Initial Approach

DARPA data set for intrusion detection [3] is used for
training and testing our HMM model. Preliminary results
obtained for the above said approach were not satisfactory.
The model had very high false positive rate, i.e., clean traffic
stream were also being flagged as attack. The classifier did
not succeed in discriminating between good traffic and bad
traffic. This low performance might be attributed to using just
one HMM to learn all clean traffic profile. A single HMM
could not capture all the characteristics of clean traffic that
were used for training.

C. Alternate Design

In order to overcome the above said shortcoming, we
performed source separation on training/testing traffic ac-
cording to destination ports of the server and then upon
source/destination IP address. Instead of using a single HMM
to lean all traffic coming to a server, we used separate HMMs
for each frequently occurring server port. The reasoning
behind such an approach is that not all traffic belonging to
different applications behave in the same way. For instance,
different traffic streams belonging to a particular application
port, say port 25 (SMTP), have similar characteristics thanto
traffic at port 20 (FTP). This approach improved the results
drastically, i.e., the model had higher accuracy and lower false
positive rate compared to the single HMM approach.

The implementation details of this model are as follows.
Training traffic to the server is first separated based upon
destination port number of packets. Traffic to particular ports
are then source separated and trained by separate models for
each port. Ports which have higher traffic, like ports for HTTP,
telnet, FTP, etc., were modeled with separate HMM models.
Traffic to other infrequent ports were modeled by a separate
model. The testing phase proceeds the same way. Testing
traffic is first separated based upon ports and then source

separated and tested by corresponding HMM model for the
port. Figure 3 describes this approach.

Fig. 3. Layered Model

Even though port wise separation approach had better
results that single model approach, the false positive ratewere
still high, almost 10% of training traffic were flagged as attack.
Any practical system designed to detect intrusions should
have low false positive rate, i.e., rate at which a legitimate
user is wrongly classified as attack should be very low. It
is able to classify most of the frequently occurring positive
traffic correctly but it is not able to correctly classify positive
traffic that were infrequent. Infrequent traffic that were clean
or positive were also flagged as attack. We made this model
as our basic classifier model and it required us explore other
strategies that would improve the performance of our base
classifier.

D. Cascaded HMMs

The positive traffic that were wrongly classified by the
above approach were traffic streams that were not so frequent.
This can be attributed to those traffic streams which had
very low probabilities in the training phase of the above
approach. In order to overcome this high false positive rate,
we employed multi-stage combination of models to improve
the base classifier’s performance. We employed cascading of
base classifiers into several layers to improve performance.
Figure 4 describes the cascading of models.

Implementation details of this approach: Low probability
legitimate streams that were flagged suspicious by all the base
classifiers are fed as input to a separate HMM model. This
HMM trains on all the infrequently occurring streams and
builds a model. Traffic streams that have low probabilities in
this model are fed into next layer of HMM model for training.

Fig. 4. Cascaded HMM design

The above process of adding new HMMs, i.e., cascading
HMMs, can be continued until addition of a new model makes
no improvement to the accuracy of the model.

The usage of traffic streams from different protocols for
the first layer of cascaded HMM might be counter-intuitive,
since we perform protocol based traffic separation in the
first step before feeding traffic into HMM models for each
protocol. We observed that most of training traffic connections
to frequently occurring ports were correctly classified by their
respective HMM model. The number of connections that were
wrongly flagged as anomalous were very less. But this was
not the case with the HMM model for infrequent port traffic.
The traffic connections that occur infrequently were the ones
wrongly flagged by initial HMMs. Since the connections were
anyway infrequent in their respective protocol, combining
them together did not reduce the performance of the model.
Instead, it improved the accuracy of the HMM model.

The HMM model can be extended to having separate levels
of cascading for each protocol. Since the data available for
training and testing were limited, we performed a combined
layer of cascading for all protocols.

IV. PRELIMINARY RESULTS

Building any classifier involves two phases, i.e., training
and testing phases. Training phase in our approach involves
learning the parameters of the model from a clean traffic
trace. HMM profiles this data and uses this information to test
incoming traffic. During the testing phase, traffic that werenot
used for training are tested against the model learnt. To build a
classifier we need to have labeled data for training and testing.
Data sets released by DARPA[3] were used to train and test
our classifier.

Experiments

The experiments that were conducted are described as
follows.

states Connection Separation Separate Models for Protocols Boosting Accuracy (%) False Alarm Rate (%)

5 Just IP No No 81.75 19.63
9 Just IP No No 85.14 15.05
5 IP & Port Yes No 91.49 9.49
9 IP & Port Yes No 92.27 8.49
5 IP & Port Yes Yes 96.96 2.89
9 IP & Port Yes Yes 97.1 2.71

TABLE I
RESULTS ONDARPA DATA SET

1) Single HMM model:Training traffic is separated accord-
ing to source/destination IP pair and trained with a single
HMM model. In the testing phase, source separated connec-
tions were tested against the learnt model. The performance
of the model is bad since it had very high false positive
rate. Probable reason for the failure of the model could be
that a single HMM could not capture all possible traffic
characteristics. High false positive rate can be alleviated by
the following approach.

2) Multiple HMM models:We performed source separation
both on IP and port information of source and destination.
Separate HMMs were used to train/test connections pertaining
to different protocols. Protocols with large amount of incoming
traffic were trained separately, while other infrequent ports
were trained separately. This approach reduced the false pos-
itive rate and we made this type of source separation as our
basic step for building HMM.

3) Cascading of HMMs: In order to improve the per-
formance of the above approach, we employed boosting.
HMM models were cascaded into several layers to model low
probability traffic. The results reported for our experiments are
using two layers of HMM model for cascading.

We used two days of clean traffic data from DARPA data
set for training and the rest of the traffic from other days were
used for testing the learnt model. This way we don’t overfit
the training process. Table I describe the performance of our
model on a particular server in DARPA data.

Number of states for the model

The number of states to be used for HMM could be
determined experimentally. Using 9 or 10 states for the model
gave us good results for DARPA data set. We tried using
higher number of states for HMM and the results obtained
were similar and did not improve the performance any further.
Hence we have reported the results on using 9 states for HMM
model.

Attacks detected by HMM

The following attacks present in the DARPA data set were
detected by HMM model.

• neptune - Syn flood denial of service attack on one or
more ports.

• ipsweep - Surveillance sweep performing ping on multi-
ple host addresses.

• portsweep - Surveillance sweep through many ports to
determine which services are active on a single host.

• satan - Network probing tool to exploiting well-known
weaknesses.

• nmap - Network mapping using the nmap tool.

Auckland Data Set

We tried our cascaded HMM experiments on Auckland
IV[4] data set. In the training phase, HMM model is trained
with clean HTTP traffic from DARPA data. For testing pur-
pose, HTTP traffic to various servers in Auckland data set
were considered. Auckland data set is not a labeled data set.
Hence the testing results had to be cross checked manually.
HTTP sequences that were flagged as anomalous were of the
following types.

• Reset Attacks
• Short Connections

Connections that were too short were flagged as anomalous
by the model. The reason for very short connection length
could be abrupt end of connection. HMM model with just 5
states is sufficient for classifying Auckland data set.

V. M OTIVATION FOR HYBRID APPROACH

The goal of the work is to implement suitable models that
can function effectively in real time. When implementing the
above model into a real-time system and it in turn had the
following pitfalls [6].

Source separation of incoming traffic is the first and fore-
most step in our design. This way, the model keeps track of
all incoming IP addresses. But then, the problem of IP address
spoofing could tax our proposed model. Assume an incoming
packet to have spoofed IP address. The server replies to it
and allocates resource for this IP address. It is highly unlikely
that the connection established by a spoofed IP address would
proceed any further. This would make the server to wait
until time out period and to reclaim allocated resource. The
above scenario could be repeated by attackers and result in
exhausting the resources of a server.

The second issue to consider is the typical length of a
connection. The DARPA data used for training and testing
our model had information about entire connections. But in
reality, we have no way of telling when a connection would
end. The computations performed had complete end to end
connection data, which is quite impossible in reality. If this
model were to be implemented in a server, then the server has
to have separate buffers for each incoming new connection.
This again would end up in using all of server’s available
buffer to store packets. We cannot decide on how much buffer

space to allocate, since we do not know the length of each
connection.

Aforementioned drawbacks prevent HMM based model
from being implemented as a stand alone device for a server’s
security. In the next section, we will describe another approach
where HMM model coupled with Naive Bayesian based model
would overcome these issues.

VI. H YBRID MODEL

We propose a hybrid model combining our HMM based
model with Naive Bayesian (NB) based approach proposed
by Vijayasarathy et al. [2] to address the issues. Hybrid
model would have NB model for online learning and HMM
model for offline learning. The online classifier (NB model)
would monitor incoming traffic and flag traffic blocks that are
suspicious. The offline classifier (HMM model) would be fed
with the traffic flagged by NB model. HMM model would then
perform source separation for the connections present in the
flagged traffic and classifies the connections as either attack or
normal. The addition of HMM model to NB model is intended
to narrow down on the attacking IPs present in flagged traffic
rather than to improve the performance of it.

Figure 5 depicts the proposed hybrid model.

Fig. 5. Flow diagram

A. Working of NB model

Incoming traffic to NB model is split up into logical units
called windows. Each window is a group of packets and
modeling is based on TCP flags set in packets. Based on
experiments, packets in a window can belong to any one of
the following depending upon the TCP flag that is set.

1) RST - packets with reset bit set
2) SYN - syn packets
3) ACK - ack packets
4) FIN/ACK - fin/ack packets
5) PSH/ACK - push/ack packets
6) others - packets with other TCP flags set.

This six tuple describes the mix of traffic present in a
window. For example, for a window of size 100 with<3
RSTs, 8 SYNs, 48 ACKs, 1 FIN/ACKs, 40 PSH/ACKs, 0
other packets> could be considered normal, but<0 RSTs,
100 SYNs, 0 ACKs, 0 FIN/ACKs, 0 PSH/ACKs, 0 other
packets> would represent a syn flooding scenario. Windows

that are similar are grouped to form bands, so as to reduce
the number of different events to model. During the training
phase, the model computes the probability of occurrence of
various event types. In the testing phase, traffic windows with
very low probability of occurrence are flagged as attack.

For a detailed description of NB based approach, refer to
the original paper [2]

B. Combining the models

We used the same clean data set for training both NB
and HMM models. In the testing phase, for every window,
the NB model would classify if it were normal or abnormal.
In our implementation, if there were five consecutive attack
flags raised by the NB model, and incoming traffic from
then on would be buffered and fed as input to the HMM
model. Attack flag would be on until there are five consecutive
normal windows to the server. Buffering of data is carried on
between the raise and fall of flag. The number of windows
to consider during time out mechanism is implementation
specific, depending upon traffic characteristics of a server.

The windows that were buffered when the attack flag is
on, would be fed into HMM for further processing. Source
separation is then performed on the IP addresses present in
the flagged traffic. Individual streams, thus obtained are tested
using HMM model and probability of occurrence of each
sequence could be calculated. IP address of connections that
were anomalous could be added to firewall black list. This
way, HMM model could be used to blacklist IP addresses that
have suspicious traffic characteristics. Experiments conducted
using this approach are described in the next section.

VII. E XPERIMENTS AND RESULTS

We used CAIDA [5] data set for testing our hybrid model.
It is an hour long Distributed Denial of Service (DDoS) attack
data at a server. Since the data set consist only of attack traffic,
we mixed it with normal traffic and used hybrid model to
classify it. We considered traffic to port 80 (HTTP protocol)
for training and testing. We used same clean traffic trace from
DARPA data set for training both NB and HMM models.

For testing the classifier, we mixed traffic traces from
CAIDA and DARPA together. The IP address of destination
server of CAIDA data set traffic is changed to the same
destination server used by DARPA traffic. This mixed traffic
is used for testing our hybrid model. NB model processes
incoming traffic online, and feeds offline HMM with flagged
traffic. When an attack flag is raised, we start buffering from
ten windows prior to the window where the attack flag was ac-
tually raised. This is done to ensure that we don’t erroneously
classify connections that began recently, just before attack flag
was raised, as attack. Buffering continues until we receivefive
consecutive clean windows or upto the end of testing data file.
Figure 6 describes this process.

HMM was trained throughout with equal prior probability
to all states. This is done to ensure not to flag any clean traffic
stream that was buffered from middle as attack. When an
attack flag is raised, there would connections that would have

Attack Flag

Raised

Attack Flag

Dropped
Timeline

Buffering

begins here

Buffering

ends here

Each horizontal

line represents

an individual

connection

Fig. 6. Buffering Procedure

started early and half way through. The beginning of such a
stream would not necessarily have three way handshake.

We perform source separation on the buffered data and use
HMM to classify it. HMM was successful in finding out IPs
from CAIDA traffic on almost all cases. HMM with more than
five states had 100% accuracy classifying all IPs from CAIDA
as attack and IPs from DARPA as clean. When tried with
HMM with less than five states, few of the attacking streams
were classified as clean traffic. This is due to the inability
of HMM with very few states to model the data accurately.
Using HMM with larger states gave us exact results and the
number of states to be chosen for a server can be computed
empirically.

VIII. R ELATED WORK

Lee et al. [7] proposed a system using combined misuse and
anomaly detection approaches to generate rules for IDS. For
improving efficiency, multiple model cost based approaches
are applied. These analyze and detect models with high
accuracy but low cost. A distributed architecture is proposed
for evaluating models in real time. To improve usability
adaptive learning algorithms are used for incremental updates.
To reduce reliance on the labeled data unsupervised learning
is studied.

Ourston et al. [8] have used a HMM based model to detect
complex network attacks that happens in various stages. They
use HMM to model alert sequences that were raised between
every source/destination IP pair. The hidden states of their
model correspond to various attack stages. For example, a
generic network intrusion would undergo the following states,
i.e., probe, consolidate, exploit and compromise. They use
separate HMMs for every attack type to detect such multistage
network attacks.

Chu et al. [9] use an Frequent Pattern Tree (FP-Tree) based
approach to construct a network intrusion detection system.
The architecture used for on the updates and detection is
outlined. FP Tree is constructed for normal traffic as well as
attacks so as to increase the detection rate and decrease false
alarm rate.

Cai et al. [10] have explored a TCP rule based TCP
anomaly detection system. TCP header information is used
to generate different clusters of normal traffic. These clusters
then represent unique patterns in normal network traffic. A
connection which is dissimilar to all these clusters is termed
as an attack.

In [11], Estevez et al. have used a Markov model to model
incoming HTTP requests to a server. The key assumption is
that HTTP protocol requests have highly structured payloads.

Xu et al. [12] have considered monitoring the influx of
new IP address during DDoS scenario. IP address of incoming
traffic is categorized into two types, i.e., those which havebeen
observed already and those which are new. HMM is used to
model this sequence of IP address. The models are placed at
distributed points in the network and Reinforcement Learning
(RL) algorithms are used for efficient message passing among
these distributed network points.

IX. CONCLUSION

In this paper, we have proposed a hybrid approach for
adaptive network intrusion detection. We started off with
HMM for network intrusion detection and it performed good
empirically on DARPA data set. The difficulties that might
arise when implementing HMM model in real time were
described. We incorporated HMM model along with NB model
into a hybrid model for intrusion detection. The proposed
hybrid model also performed well in detecting intrusions and
the experiments and results also reported. As an extension
to HMM model, we would like to look at characterizing the
diurnal variation characteristics of traffic to web server.It
would involve learning the nature of traffic at various instances
of the day.

REFERENCES

[1] Lawrence R. Rabiner,A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition, Proceedings of the IEEE, 1989.

[2] Vijayasarathy, R., Ravindran, B.and Raghavan, S.V.,A system approach to
network modeling for DDoS detection using a Naive Bayesian classifier,
COMSNETS, 2011.

[3] DARPA intrusion detection evaluation dataset, http://www.ll.mit.edu/
mission/communications/ist/corpora/ideval/data/index.html

[4] Auckland IV Dataset, http://www.wand.net.nz/wits/auck/4/
[5] Paul Hick, Emile Aben, kc claffy, Josh Polterock,The CAIDA ”DDoS At-

tack 2007” Dataset, http://www.caida.org/data/passive/ddos-20070804
dataset.xml

[6] Vijayasarathy, R - personal communication.
[7] Wenke Lee and Salvatore J. Stolfo and Philip K. Chan and Eleazar Eskin

and Wei Fan and Matthew Miller and Shlomo Hershkop and Junxin
Zhang,Real Time Data Mining-based Intrusion Detection, IEEE, 2001.

[8] Ourston, Dirk and Matzner, Sara and Stump, William and Hopkins, Bryan,
Applications of Hidden Markov Models to Detecting Multi-stage Network
Attacks, HICSS, 2003.

[9] Nelson CN Chu, Adepele Williams, Reda Alhajj, Ken Barker,Data stream
mining architecture for network intrusion detection, IEEE, 2004.

[10] Weijie Cai , Li Li, Network Traffic Anomaly Detection Using TCP
Header Information, IEEE, 2004.

[11] Estevez-Tapiador, Juan M. and Diaz-Verdejo, Jesus E,Detection of Web-
based Attacks through Markovian Protocol Parsing, ISCC, 2005.

[12] Xu, Xin and Sun, Yongqiang and Huang, Zunguo,Defending DDoS
Attacks Using Hidden Markov Models and Cooperative Reinforcement
Learning, PAISI, 2007.

