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Abstract—Classical machine learning techniques assume the
data to be i.i.d., but the real world data is inherently relational
and can generally be represented using graphs or some variants
of a graph representation. The importance of modeling relational
data is evident from its increasing presence in many domains:
Telecom networks, WWW, social networks, organizational net-
works, images, protein sequences, etc. This field has recently
been receiving a lot of attention in various communities under
different themes depending on the problem addressed and the
nature of solution proposed. Collective classification is one such
popular approach which involves the use of a local classifier that
embeds the node’s own attributes and neighbors’ information in
a feature vector, and classifies the nodes in an iterative procedure.
Despite the increasing popularity, there is not much attention paid
towards datasets with multiple attributes and multi-relational
(MAMR) networks under multi-label scenarios. In MAMR data,
nodes can be represented using multiple types of attributes
(attribute views) and there are multiple link types between the
nodes. For example, in Twitter, users can be represented using
their tweets, urls shared, hashtags and list memberships. And
different Twitter users can be connected using follower, followed
by and re-tweet links. Secondly, in many networks, nodes are
associated with more than one label. For instance, Twitter users
can be tagged with one or more labels from a set L, where L
contains various movie genres that a user might like. Motivated
by this, we propose a learning technique for multi-label collective
classification using multiple attribute views on multi-relational
network data which captures complex label correlations within
and across attribute/relationship types. We empirically evaluate
our proposed approach on Twitter and MovieLens datasets, and
we show that it performs better than the state-of-art approaches.

I. INTRODUCTION

Many real world applications such as web page classifica-
tion [1], churn prediction [2] and sentiment analysis [3] etc.,
have an inherent network structure that results in correlation
between labels of neighboring data points. For example, in
web page classification, hyperlinks between web pages convey
that there is a strong correlation between labels of linked
pages. Existing works that handle network data can be broadly
classified into two types: (1) methods that use only relational
(structure) information (2) methods that use both attribute and
relational information. It has been shown that latter type of
methods capture richer information than the former ones.

Collective classification is one of the popular approaches
that can handle both attribute and relational information [4],
[5]. It includes node classification techniques, which jointly
model attribute data and label correlation information of
related objects, by combining traditional machine learning

and link (neighborhood structure) based classification in an
iterative procedure. Semi-supervised collective classification
techniques have been proposed by researchers to handle par-
tially labeled networks [3], [6], [7].

All these collective classification techniques assume the
data-points to have only one attribute and one link repre-
sentation. But many real-world datasets possess additional
information that can be utilized to improve the performance.
For example, in an academic dataset, in order to classify
research interests, researchers can be represented not only
using a single attribute view such as their publications’ text
but also using other attribute views such as their homepage
content, conference details of their publications and multiple
relational views such as their co-authorship network, co-
citation network and so on. Thus network data can have
multiple attribute (vector-based) and multiple relational (graph-
based) representations. Also, in many such complex network
datasets such as Twitter, Facebook and LinkedIn, the nodes are
commonly associated with more than one label. For instance,
the labels could be social network users’ interests. This is
referred to as multi-label classification [8].

When multiple views of data are available, we can use
a different class of methods to take advantage of unlabeled
data [9]. Multi-view learning techniques learn a model for
each available view of the data and minimize the disagreement
between multiple views on the unlabeled data. Co-training
[10], [11] is a multi-view semi-supervised learning algorithm
which learns a model on each view of the data and exchanges
confident predictions with each other, thereby leveraging com-
plementary information available across different views. How-
ever, multi-view learning methods do not model network data
with relational features.

Recently, MAMR setup and multi-label classification on
network data has drawn the attention of researchers separately.
To the best of our knowledge there is no existing work for
multi-label classification handling MAMR data in a semi-
supervised setup. This scenario can be found in many ap-
plications such as: (1) Twitter users’ interest classification,
where users can be represented using their tweets, urls shared,
hashtags and list memberships. And different Twitter users can
be connected using follower, followed by and re-tweet links.
(2) Topic classification on web page dataset, where each web
page can be represented using the text, hashtags and images.
Additionally different web pages can be connected using in-
link, out-link and co-citation networks.



The key challenge would be to design a multi-label semi-
supervised learning technique that would not only exploit
multiple attribute and relational view data but also correlation
between labels. In multi-label scenario, there may be depen-
dency among labels associated with instances as in the case
of research interest prediction, where a researcher working
on data mining is more likely to work on machine learning,
whereas a researcher working on microprocessors is unlikely
to work on machine learning and there may be correlation
among labels of related instances as researchers with similar
interest collaborate together for publications/projects. Thus
complex label correlations must be captured within the same
instance across multiple attribute views and among labels
of related instances across multiple relational views. In this
work, we address these challenges by building upon multi-view
learning technique to solve multi-label collective classification
on MAMR data by treating multiple attribute and multiple
relational types as different views.

In this paper, we refer to network data with multiple at-
tribute views (representations) and multi-relational information
as multi-attribute multi-relational (MAMR) datasets. Also we
use ‘single attribute‘ to denote datasets with only one attribute
view and ‘multi-attribute‘ for datasets with multiple types of
attribute views. Finally, as commonly used in the literature,
we also use single and multi-relational data for networks with
single and multiple relationship types respectively.

II. RELATED WORKS

Some of the recent works which address a similar classi-
fication problem are discussed below:
Multi-Label Collective Classification (MLCC) [12] adapts
collective classification technique to handle multi-label clas-
sification on single attribute single relational network data.
It transforms the multi-label problem into multiple binary
relevance problems one for each label and captures complex
label correlations that may exist among labels within the same
instance and across related instances; by stacking labels of the
same instance and related instances with the feature set.
Across-model Collective Ensemble Classification (CEC) [13]
is a single-label collective classification technique for single
attribute multi-relational network data. In [13], the authors
propose an ensemble framework that can iteratively infer from
multiple collective classifiers learnt over multiple networks,
one for each network.
Iterative annotation of multi-relational social networks (IMR)
[14] is a multi-label collective classification technique for
single attribute multi-relational network data. It treats the
multi-label problem as multiple binary relevance problems by
learning collective classifiers for each label on the feature set
stacked with aggregate label information of related instances
from multiple relations for respective label classifiers. This
technique does not capture label correlations as [12].
Heterogeneous Learning (GBDT) [15] is a single label classi-
fication technique for multi-attribute multi-relational network
data. It is an error driven model which constructs a function on
each attribute view and tries to globally reduce an empirical
error function with two constraints: (1) Consensus across
various attribute sources (2) Connected instances should have
similar predictions.

[12], [13] and [14] are iterative inference techniques
(transductive setup) while [15] is a semi-supervised inductive

learning technique. Our focus is on inductive learning for
multi-label classification on MAMR data that should capture
complex label correlations. The closest related work would be
[15], but since it enforces homophily and does not leverage
label correlation information, it cannot be directly used for
multi-label collective classification.

III. PROBLEM DEFINITION

In this section we define the problem of multi-label classifi-
cation on MAMR data and list down key challenges involved
in addressing the problem. Conventional node classification
algorithms (for single-label classification) in partially labeled
networks propagate labels among nodes until convergence. In
this setup, label information for a subset of nodes will be
completely known and that of the remaining nodes would be
unknown. But in many social network datasets such as Face-
book, users may be associated with multiple groups (multi-
label classification). In this scenario, label information will
not be completely known even for a subset of the nodes, i.e.,
not all label assignments will be known for nodes. For each
group (label), we could generate a labeled set of nodes, based
on any of the labeling strategies, such as group membership
based label assignment. Thus we learn a classifier for each
label separately that models the complex data and also captures
label correlations effectively.

The dataset is represented as D(N,A,G,L, T, U, Y ),
where N is the number of instances(nodes), A is the set
of vector based attribute views, G is the set of graph based
relational features, L is the label set, T is the family of sets
of labeled instances’ indices for each label, U is the family
of sets of unlabeled instances’ indices for each label and Y is
the label vector for instances. Important notations followed in
this paper are tabulated in Table I.

TABLE I Symbol Table
Symbol Definition
A = {A1, A2, . . . , Ap} set of p attribute views

(Ai ∈ Rji , ji is the dimension of ith view)
G = {G1, G2, . . . , Gq} set of q relational(graph) views
L = {L1, ...Lk} the set of k labels
T = {T1, T2, . . . , Tk} k sets of labeled instances’ indices over N
U = {U1, U2, . . . , Uk} k sets of unlabeled instances’ indices over N
Yi = (Y 1

i , Y 2
i , . . . , Y k

i ) label vector for ith instance,
(Y j

i = 1 if j ∈ L else Y j
i = 0)

In order to exploit MAMR data for multi-label classifica-
tion, various information need to be captured while modeling.
The key challenges involved are:

1) Building a unified model for multiple views which
may differ in representation (attribute and structure)
and statistical properties (distribution), P (Y |A,G).

2) Maximizing consensus among multiple attribute and
multiple relational views separately to leverage the
unlabeled information. Also, exploiting complemen-
tary information between attribute and link views at
a higher level that effectively utilizes both the node’s
profile and relationships.

3) Capturing complex label correlations that may exist
within the same instance across multiple attribute
views and among labels of related instances across
multiple relational views, also (at a higher level)
between attribute and relational views.
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Loss on unlabeled data

) (1)

L1(A,G,L, T ) =
∑
l∈L

(∑
a∈A

L(f la(Aa
Tl

), Y l
Tl

)︸ ︷︷ ︸
Attribute views’ disagreement

+
∑
g∈G

L(f lg(Gg
Tl

), Y l
Tl

)︸ ︷︷ ︸
Relational views’ disagreement

)

L2(A,G,L, U) =
∑
l∈L

(∑
a∈A

(f la(Aa
Ul

)−
∏
a∈A

f la(Aa
Ul

))2︸ ︷︷ ︸
Disagreement among attribute views

+
∑
g∈G

f lg(Gg
Ul

)−
∏
g∈G

f lg(Gg
Ul

))2
)

︸ ︷︷ ︸
Disagreement among relational views

L3(A,G,L, U) =
∑
l∈L

(∑
a∈A

(f la(Aa
Ul

)−
∏
g∈G

f lg(Gg
Ul

))2︸ ︷︷ ︸
Attribute views’ disagreement with relational views

+
∑
g∈G

f lg(Gg
Ul
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))2
)
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Relational views’ disagreement with attribute views

IV. PROPOSED SOLUTION

A. Proposed Framework

Semi-supervised learning methods minimize the loss on
both labeled and unlabeled data. The loss on labeled data is
solved with supervised machine learning techniques that fit a
model to the data, whereas the loss on unlabeled data varies
depending on the semi-supervised paradigm used. In the case
of disagreement based semi-supervised techniques such as co-
training methods, loss on unlabeled data is captured as the
disagreement on unlabeled data between views.

We propose a co-training style learning framework for
multi-label classification on multi-attribute and multi-relational
data. The proposed framework learns a classifier (f l) for each
label, (l ∈ L) on each attribute view (a ∈ A) and each
relational view (g ∈ G), leveraging both labeled and unlabeled
data. The classifiers learned on attribute and relational views
are denoted as f la and f lg respectively. The objective function
solved by the framework can be expressed as a minimization
of three loss terms L1, L2 and L3 as given in equation (1).

L1 represents the loss on labeled data on both attribute
and relational views, where L is the loss function of the
classifier used. For SVM classifier [16] which we use in
this work, L would be Hinge loss. The proposed framework
leverages unlabeled data by reducing the loss terms L2 and L3,
where L2 represents the local disagreement within predictions
of multiple attribute and multiple relational views and L3

represents the global disagreement between the predictions
of individual attribute and relational views with combined
predictions from relational and attribute views respectively.

The proposed co-training style framework handles L2

and L3 losses with two update steps alternatively. The first
update uses an ensemble averaging based co-training method
to maximize consensus locally within multiple attribute views
and multiple relational views. In ensemble averaging based
co-training, we learn a model on each view and combine the
predictions using voting. We select instances with high scores
from voting to be appended to the labeled set for re-training.
Conventional co-training algorithms re-train from confident
predictions of individual views which may be noisy, whereas
ensemble based techniques can help in reducing variance (error
on unlabeled data) which is very critical for semi-supervised
setup in order to prevent noisy label propagation [17]. The
second update uses a co-training style method to reduce the

disagreement between attribute and relational views globally
by exchanging highly confident predictions obtained from
ensemble of local view classifiers from the previous update.

B. Handling Relational Information

Co-training methods cannot handle relational data directly;
hence we need to transform relational views into vector-based
views. Each relational view, Gi is transformed into a vector
space, (TGi) where instances are represented with aggregated
label information [5] (COUNT, MODE, label distribution, etc.)
of it’s neighbors in Gi. This transformation enables us to
learn a unified model across multiple views (attribute and
relational). Secondly, co-training assumes that the instances
do not have any missing views, but MAMR data could
have missing views especially relational views since it can
contain arbitrary relationships between nodes. Nodes with
arbitrary relationships, i.e., not all relationship types might be
present for a particular node, can easily be found in social
networks. For instance, in case of Twitter, we witness absence
of follower information for less active users. In such cases,
it is not advisable to consider missing views for nodes while
learning. The transformation step handles such cases suitably
for different aggregation techniques used: zero vector for
count based transformation, equal probability vector for label
distribution based transformation, and so on.

C. Handling Label Correlation

MAMR data has complex label correlations. Labels within
the same instance may be correlated across different attribute
views and labels of related instances may be correlated across
different relational views. In order to capture label correlation
information for each label within instances, we follow a two
step procedure similar to [18]. In the first step, for each label
we predict labels for instances on each view and combine
them by voting. In the second step, for each label l on
each view Ai, we obtain a new feature set, SAi by stacking
Ai with a binary vector Y −li that captures the labels in
{L − l} obtained from the predictions. Since the same label
correlation information Y −li for each label l obtained from
voting is stacked across multiple attribute views, consensus
among stacked attribute views will be maximized. Whereas
label correlations between related instances are automatically
captured by classifiers learned on the transformed relational
data, as the data explicitly represents the summarized label
correlation information of related instances.



D. Algorithm

The objective function in equation (1) is extended to cap-
ture relational information and label correlations as mentioned
in section IV-B and IV-C respectively. The new objective
function is given below in equation (2).

min(L1(SA, TG,L, T )+L2(SA, TG,L, U)+L3(SA, TG,L, U)) (2)

The proposed solution handles the above mentioned objective
function as described in Algorithm 1. In order to learn on
multiple views with label correlation information, we need
label predictions for stacking as explained in IV-C. Hence
we bootstrap labels for unlabeled instances using multi-view
learning on attribute views as explained by the function
MVLearning in the Algorithm 2. After bootstrapping, the
iterative multi-view learning procedure follows. We minimize
the four disagreement terms expressed in L2 and L3 losses
alternatively and iteratively by the following four steps:

1) We create stacked attribute views for
each labels as explained in section IV-C
(stackLabelCorrelation(A, Y, l)). For unlabeled
instances, stacked attribute views are created by
stacking the original feature set of views with label
predictions obtained from an ensemble (voting) of
attribute learners and for labeled instances given
labels are stacked. Then for each label, we (re-)train
a model on each attribute view with top confident
predictions from an ensemble of attribute classifiers
(either from step 4 or initially with bootstrapped
ensemble of predictions). This step aims to locally
maximize consensus within multiple attribute views.

2) We create relational views as explained in section
IV-B (transformGraph(G, Y )) with predictions
from an ensemble of attribute classifiers. Then for
each label, we (re-)train a model on each transformed
relational view with top confident labels shared by an
ensemble of attribute classifiers from step 1. This step
aims to globally reduce the disagreement between
each relational view and multiple attribute views
by learning from shared complementary information
from an ensemble of attribute classifiers.

3) We update the transformed relational views
(transformGraph(GT , YT )) with confident
predictions from step 2. For each label, we (re-)train
a model on each relational view with top confident
predictions from an ensemble of relational classifiers
from step 2. This step aims to locally maximize the
consensus within multiple relational views.

4) We update stacked attribute views
(stackLabelCorrelation(AT , YT , l)) with confident
predictions from step 3. For each label, we (re-)train
a model on each stacked attribute view with top
confident predictions shared from an ensemble of
relational classifiers and thereby reduce the global
disagreement between each attribute view and
multiple relational views. Steps 1 to 4 are iterated
until the termination condition is met.

MVLEARNING(views, T, U, Y ) function learns a one-vs-
all SVM classifier for each label on the labeled data obtained
from an ensemble of multi-view learners either locally within
attribute/relational views or globally across attribute and rela-
tional views. The posterior probability for positive class and

negative class for each label on unlabeled data is predicted
on all views. Then we combine probabilities by voting to find
highly confident predictions for each label and append it to
the labeled set for that label.

Algorithm 1 ML−MAMR

Input: D(A, G, L, T, N, Y )
Output: [fA, fG, Y ]
Bootstrap:

for l in L do
[fA, T

l, U l, Y l] = MV Learning(A, T l, U l, Y l)
end for
Iterative multi-view learning:
repeat
Step 1:

for l in L do
SA = stackLabelCorrelation(A, Y, l)
[f lA, T

l, U l, Y l] = MV Learning(SA, T l, U l, Y l)
end for

Step 2:
TG = transformGraph(G, Y )
for l in L do

[f lG, T
l, U l, Y l] = MV Learning(TG, T l, U l, Y l)

end for
Step 3:

TGT = transformGraph(GT , YT )
for l in L do

[f lG, T
l, U l, Y l] = MV Learning(TG, T l, U l, Y l)

end for
Step 4:

for l in L do
SAT = stackLabelCorrelation(AT , YT , l)
[f lA, T

l, U l, Y l] = MV Learning(SA, T l, U l, Y l)
end for

until U l = φ, ∀l ∈ L

Algorithm 2 MVLearning
function MVLEARNING(views, T, U, Y )

for X in views do
fX = SVM Train(XT , YT )
[PX , NX , Yu]= SVM Predict(fX , XU )

end for
PProb = ΠX PX , where x ∈ A [voting]
NProb = ΠX NX , where x ∈ A [voting]
T = T ∪ getConfidentLabels(PProb, NProb)
U = U \ T

return [f, T, U, Y ]
end function

The getConfidenceLabels(PProb, NProb) function re-
turns instances with top confident predictions. There are many
techniques to choose confident labels. We choose the top 10%
confident predictions while maintaining the label distribution
(positive, negative class distribution for each label) same as in
the given labeled set.

For collective inference on MAMR data under semi-
supervised conditions, we can use the same iterative learning
procedure given in Algorithm 1 without re-estimating the
parameters of f la and f lg .



V. EXPERIMENTAL RESULTS
A. Datasets

We have used two datasets to evaluate the performance of
the proposed ML −MAMR model. A short description of
the datasets used is given below:

Rugby Players and Clubs on Twitter (Twitter Dataset):
UCD MLG group’s multi-view Twitter dataset1 is a collection
of 854 International Rugby Union players, clubs and
organizations on Twitter. The ground truth consists of
communities corresponding to 15 countries. The communities
are overlapping, as players can be associated with their home
nation and the nation in which they play club rugby. We used
all the views as it is from the source dataset.
There are 9 different views in the dataset, viz.:
Attribute views (3): tweet contents of players, list memberships
of each player and the corresponding lists’ contents.
Relational views (6): followers, followedby, mentions,
mentionedby, retweets and retweetedby relations of players.
The characteristics of the data are as follows:
Instances: 854; Labels: 15; Label cardinality: 1.2307
Label density: 2.2976

MovieLens Dataset (Movie Dataset):
This dataset is an extension of GroupLens research group’s
MovieLens10M2 dataset. The task here is to predict relevant
genres for each movie.
We extracted 4 different views from the data, viz.:
Attribute views (2): movie summary and movie tags.
Relational views (2): actor and director graphs.
Tags of movies are directly obtained from the source dataset,
while summary of movies were extracted from IMDB3

database using the IMDB ids of movies given in the source
dataset. Summary (text) is represented using term-frequency
(TF) representation, where the vocabulary was built using
distinct words with (freq(words)�3). Actor and director
information of movies are available in the source dataset,
with which we created actor and director graphs by adding
links between movies that share common artists and directors
respectively.
The characteristics of the data are as follows:
Instances: 3911; Labels: 18; Label cardinality: 0.0820;
Label density: 0.1276

In general, the number of labels associated to instances (on
an average) plays a key role in capturing label correlations. We
can see that Movie dataset has higher label density and cardi-
nality measures compared to Twitter dataset which allows the
proposed technique to capture richer correlation information.
This can also be seen in experimental results section, where
the gain in performance using the proposed method (compared
to state-of-art techniques) is higher on Movie-Genre dataset.
B. Baseline methods and Experimental Setup

We compare our proposed ML − MAMR learning ap-
proach with three related works discussed in section II, viz:
MLCC [12], CEC [13] and GBDT [15]). Our primary focus is
on capturing complex label correlations (within instance and
across related instances) besides MAMR setup and since IMR

1http://mlg.ucd.ie/networks/rugby.html, http://mlg.ucd.ie/aggregation/
2http://ir.ii.uam.es/hetrec2011/datasets.html
3http://www.imdb.com

[14] assumes all labels to be independent, we use CEC ML
as a baseline to compare our performance with a technique
that handles single-attribute multi-relational data with complex
label correlations. In CEC ML, we stack label correlation
information similar to MLCC in CEC method.

In order for MLCC, CEC and CEC ML to handle
multi-attribute data we combine multiple attribute views into a
single attribute view by stacking views together and similarly
for MLCC to handle multi-relational data we combine multiple
relational views into a single relational view by adding links
between nodes if they have at least one link (based on any of
the relationships) between them.

ML −MAMR, MLCC, CEC and CEC ML do not
have any parameters. As our work does not focus on weighting
views, in GBDT we give equal weight to attribute views and
relational views on an abstract level (λ0 = 0.5 and λ1 = 0.5)
and also at individual view level among attribute and relational
views (w).The base classifier used for the experiments is
libsvm’s [16] implementation of SVM.

The below mentioned performance measures are averaged
using 5-fold cross validation for each labeled ratio. We repeat
the experiments with different labeled ratios (10% 30% 50%
70% and 90%) in-order to evaluate the robustness of our
proposed method under label sparsity conditions. For each
label, training instances are chosen by using stratified random
sampling, i.e., instance ratio for each label in the labeled set
is maintained at the same ratio as present in the entire dataset
[19]. We evaluate the performance using four commonly used
metrics for multi-label classification [8]: Exact-Match-Ratio,
Accuracy, Precision and Hamming Loss.
C. Results

Experimental results on the two datasets comparing our
proposed approach with baseline methods are given in Tables
II and III. The results are given on a percentage scale.
Performances of the best method on each metric are high-
lighted. Overall, the proposed approach performs better than
the baseline approaches. Some of the observations that we
derived from the results are given below:
• Performance gain on Movie dataset is higher com-

pared to Twitter dataset, which goes well with the
intuition that it is possible to capture label corre-
lations better on a dataset which has higher label
density/cardinality.

• Following from the previous observation, on Twitter
dataset, GDBT performs better than other baseline
techniques and similarly on Movie dataset, MLCC
performs better than the rest. It reinstates the argument
that GDBT assumes homophily and is not naturally
suitable for multi-label classification.

• Proposed approach shows better gain in performance
for scenarios with lower labeled instances (training
ratio), i.e., handles label sparsity by leveraging all the
views effectively.

• Exact match ratio is considered as the strictest evalu-
ation metric for multi-label classification. From the
experimental results, we can see that the proposed
approach shows maximum gain in performance on
exact match ratio than other metrics. It re-emphasizes
the fact that our proposed approach captures necessary
label correlation information effectively.



TABLE II TWITTER DATASET (RUGBY-NATION)
10% 30% 50% 70% 90%

Exact Match Ratio
MLCC 0 0 27.811 79.291 85.872
CEC 49.161 70.1 77.339 78.085 78.234
CEC ML 47.364 72.743 80.344 83.42 84.985
GBDT 56.547 70.704 77.58 82.416 83.944
ML-MAMR 65.319 82.598 85.029 87.791 88.276

Accuracy
MLCC 15.238 24.382 57.868 87.406 90.7
CEC 66.636 79.93 83.246 83.783 83.503
CEC ML 66.991 82.642 86.954 88.727 89.168
GBDT 66.353 79.688 84.681 87.721 88.871
ML-MAMR 76.821 89.579 91.055 92.487 92.038

Precision
MLCC 15.447 24.663 58.991 89.268 91.929
CEC 70.074 82.633 85.536 85.726 84.913
CEC ML 70.593 85.489 89.58 90.733 90.397
GBDT 70.998 83.758 87.652 89.936 90.143
ML-MAMR 82.962 94.612 94.889 95.186 92.976

Hamming Loss
MLCC 46.083 23.575 7.632 1.542 1.044
CEC 5.449 2.7 1.861 1.707 1.641
CEC ML 5.099 2.301 1.532 1.236 1.116
GBDT 3.587 2.306 1.716 1.313 1.129
ML-MAMR 3.023 1.42 1.195 0.955 0.898

TABLE III MOVIE DATASET (MOVIE-GENRE)
10% 30% 50% 70% 90%

Exact Match Ratio
MLCC 0.997 1.07 1.637 17.85 22.523
CEC 7.189 10.825 12.045 11.746 12.712
CEC ML 4.544 4.898 7.479 12.9 13.921
GBDT 3.37 3.336 3.951 4.974 6.476
ML-MAMR 14.849 17.565 20.306 22.413 24.683

Accuracy
MLCC 12.163 12.556 13.556 37.222 38.609
CEC 29.924 32.649 32.247 31.276 29.255
CEC ML 23.326 24.419 27.978 34.449 36.178
GBDT 30.45 32.146 33.35 33.533 32.447
ML-MAMR 32.755 36.635 39.216 39.672 39.232

Precision
MLCC 14.243 15.671 17.06 53.323 49.268
CEC 42.889 47.502 46.257 43.12 36.681
CEC ML 32.028 33.827 38.704 46.353 43.899
GBDT 37.335 38.017 38.988 38.738 36.355
ML-MAMR 55.003 58.137 59.738 57.233 50.435

Hamming Loss
MLCC 48.632 35.64 34.708 10.588 9.33
CEC 15.985 13.559 12.993 12.454 11.642
CEC ML 24.48 18.494 15.339 12.195 11.02
GBDT 20.249 19.535 18.222 17.285 16.303
ML-MAMR 11.815 10.981 10.304 9.817 9.116

VI. CONCLUSION

In this paper we studied the problem of multi-label clas-
sification for multi-attribute multi-relational data sources. The
complexities of the data require a unified multi-label model
to learn from multiple attribute and arbitrary relational views.
Secondly, the proposed technique also captures various com-
plex label correlations within and across attribute and relational

data. To the best of our knowledge, the proposed co-training
style algorithm is the first to provide a solution to this problem.
The proposed algorithm tries to maximize the consensus
among various attribute and relational views individually, and
simultaneously reduces disagreement between attribute and re-
lational views by sharing complementary information between
them. It is very much evident from the empirical results that the
proposed algorithm not only exploits multiple views, but also
captures label correlations effectively than any of the existing
works.
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